Hybrid Multilogistic Regression by Means of Evolutionary Radial Basis Functions: Application to Precision Agriculture
نویسندگان
چکیده
In this paper, a previously defined hybrid multilogistic regression model is extended and applied to a precision agriculture problem. This model is based on a prediction function which is a combination of the initial covariates of the problem and the hidden neurons of an Artificial Neural Network (ANN). Several statistical and soft computing techniques have been applied for determining these models such as logistic regression, ANNs and Evolutionary Algorithms (EAs). This paper proposes the use of Radial Basis Functions (RBFs) transformations for this model. The estimation of the coefficients of the model is basically carried out in two phases. First, the number of RBFs and the radii and centers’ vector are determined by means of an EA. Afterwards, the new RBF nonlinear transformations obtained for the best individual in the last generation are added to the covariate space. Finally, a maximum likelihood optimization method determines the rest of the coefficients of the multilogistic regression model. In order to determine the performance of this approach, it has been applied to a problem of discriminating cover crops in olive orchards affected by its phenological stage using their spectral signatures obtained with a high-resolution field spectroradiometer. The empirical results for this complex real agronomical problem and the corresponding Dunnet statistical test carried out show that the proposed model is very promising in terms of classification accuracy and number of wavelengths used by the classifier.
منابع مشابه
Novel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملMultilogistic regression by means of evolutionary product-unit neural networks
We propose a multilogistic regression model based on the combination of linear and product-unit models, where the product-unit nonlinear functions are constructed with the product of the inputs raised to arbitrary powers. The estimation of the coefficients of the model is carried out in two phases. First, the number of product-unit basis functions and the exponents' vector are determined by mea...
متن کاملA logistic radial basis function regression method for discrimination of cover crops in olive orchards
Olive (Olea europaea L.) is the main perennial Spanish crop. Soil management in olive orchards is mainly based on intensive and tillage operations, which have a great relevancy in terms of negative environmental impacts. Due to this reason, the European Union (EU) only subsidizes cropping systems which require the implementation of conservation agro-environmental techniques such as cover crops ...
متن کاملA meshless technique for nonlinear Volterra-Fredholm integral equations via hybrid of radial basis functions
In this paper, an effective technique is proposed to determine thenumerical solution of nonlinear Volterra-Fredholm integralequations (VFIEs) which is based on interpolation by the hybrid ofradial basis functions (RBFs) including both inverse multiquadrics(IMQs), hyperbolic secant (Sechs) and strictly positive definitefunctions. Zeros of the shifted Legendre polynomial are used asthe collocatio...
متن کاملA meshless method for optimal control problem of Volterra-Fredholm integral equations using multiquadratic radial basis functions
In this paper, a numerical method is proposed for solving optimal control problem of Volterra integral equations using radial basis functions (RBFs) for approximating unknown function. Actually, the method is based on interpolation by radial basis functions including multiquadrics (MQs), to determine the control vector and the corresponding state vector in linear dynamic system while minimizing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009